The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) & Heitronics Radiometers on Saildrones

Peter J Minnett, Malgorzata Szczodrak, Miguel Angel Izaguirre, Katherine Kilpatrick and Chong Jia.

Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami

pminnett@rsmas.miami.edu pminnett@earth.miami.edu

ASA POLL -

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

M-AERI

- M-AERI is a very well-calibrated and stable sea-going Fourier Transform Infrared Interferometer.
- At sea calibration by two internal blackbody cavities with thermometers with NIST-traceable calibration.
- Calibration sequence before and after each cycle of measurements.
- Calibration before and after deployments using NIST-designed water-bath blackbody calibration target at RSMAS. Uses SI-traceable thermometers at mK accuracy.
- Periodic radiometric characterization of RSMAS water-bath blackbody calibration target by NIST TXR and NPL AMBER (but not in 2022).

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

M-AERI deployments

- M-AERI deployments began in 1996; on Royal Caribbean Group (RCG) ships in 2000.
- M-AERIs now operate autonomously over satellite internet link.
- Three Mk2 M-AERI's have been deployed on RCG ships; but in the wake of COVID-19 restrictions, they have not yet been reinstalled. Currently a Mk 2 is on the NOAA Ship *Ronald H Brown*.
- One Mk3 usually deployed on research ships. The Mk 3 has been involved in laboratory measurements in the SUSTAIN (SUrge-STructure-Atmosphere INteraction) at RSMAS see https://sustain.earth.miami.edu/.

UNIVERSITY OF MIAMI

M-AERI Mk2 installed on the Adventure of the Seas.

infrared spectrometers. In N.R. Nalli (Ed.), Field Measurements for Passive Environmental Remote Sensing. To be published October 2022: Elsevier.

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop 8-9 September 2022

80° W

285

60[°] W

70 W.

M-AERI Mk2 SST_{skin} accuracies

UNIVERSITY OF MIAMI

Post-COVID deployments, Ronald H Brown

& EARTH SCIENCE

8-9 September 2022

Accessing M-AERI data

Files an

Metric

Related conten

Details

Ship-based high resolution sea surface skin temperature from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed between 2013 and 2020

Peter J Minnett, Malgorzata D Szczodrak, Miguel Angel Izaguirre and Bingkun Luo

Show details for 4 authors

University of Miami; 2020-05; DOI: https://doi.org/10.17604/bswq-0119

Send to

View Share

Abstract

& EARTH SCIENCE

UNIVE

Abstract

Files and links 🏽 M-AERI | SSTskin | Sea Surface Temperature | in situ | Meteorology | Physical Oceanography Metrics <This dataset is a part of that taken with sea-going instruments described by "Minnett, P.J.,</p> Knuteson, R.O., Best, F.A., Osborne, B.J., Hanafin, J.A., & Brown, O.B. (2001). The Marine-Atmospheric Related Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. content Journal of Atmospheric and Oceanic Technology, 18, 994-1013". Specifically, this dataset comprises measurements of M-AERIs, ship-based Fourier Transform Infrared (FTIR) interferer 💙 Expand abstract Details ROSLINGTILL DUITOL OF MARINE, ATMOSPHERIC

Files	s and links		
	Minnett_etal_2020_M-AERI_SST_2013_2020 22.27 MB	Download	• View
710			
ZIP	Open Data Commons Attribution (ODC-By) V1.0, Open Access	s	

Metrics

158 Record Views

Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/

ISERANIAtemational Werktshop 8791 8 Soptember 2022

M-AERI data in doi.org/10.17604/bswq-0119

CRUISES	AREA	START	END	DAYS OF DATA
2013 Knorr	Atlantic Ocean	2013-02-13	2013-02-28	16
2013 RHB	North Atlantic Ocean	2013-11-11	2013-12-08	27
2014 Equinox	Caribbean Sea	2014-05-09	2014-06-20	42
2014 Allure	Caribbean Sea	2014-08-24	2014-12-31	130
2014 Equinox	Caribbean Sea	2014-11-16	2014-12-31	46
2015 Allure	Caribbean Sea, North	2015-01-01	2015-11-29	360
	Atlantic Ocean, and			
	Mediterranean Sea			
2015 Equinox	Caribbean Sea	2015-01-01	2015-12-26	360
2015 Minerva Uno	Mediterranean Sea	2015-03-27	2015-04-13	17
2015 Alliance	North Atlantic Ocean	2015-11-17	2015-12-14	28
2016 Equinox	Caribbean Sea, North	2016-01-02	2016-12-31	365
	Atlantic Ocean, and			
	Mediterranean Sea			
2016 RHB	Pacific	2016-11-07	2017-03-19	132

UNIVERSITY OF MIAMI

M-AERI data in doi.org/10.17604/bswq-0119 (cont)

CRUISES	AREA	START	END	DAYS OF DATA
2017 Equinox	Caribbean Sea	2017-01-01	2017-12-31	365
2017 Allure	Caribbean Sea	2017-10-02	2017-11-26	56
2017 Minerva Uno	Mediterranean Sea	2017-05-25	2017-06-11	17
2018 Equinox	Caribbean Sea	2018-01-11	2018-09-23	255
2018 Adventure	Caribbean Sea and US East	2018-02-12	2018-12-31	322
	Coast			
2018 Allure	Caribbean Sea	2018-02-18	2018-10-14	238
2018 RHB	Global	2018-03-07	2018-10-23	231
2019 Adventure	Caribbean Sea and US East	2019-01-01	2019-10-30	302
	Coast			
2019 RHB PNE	North Atlantic Ocean	2019-02-24	2019-03-29	34
2019 RHB UNOLS	US East Coast	2019-05-07	2019-05-31	24
2019 RHB JASON	US East Coast	2019-04-08	2019-04-30	22
2020 RHB	Caribbean Sea	2020-01-06	2020-02-13	38
Total		2013-02-13	2020-02-13	3427

Skin SST from Saildrones

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE 19. X.

Skin SST from Saildrones

Saildrones are long-endurance Autonomous_Surface Vehicles (ASVs) that carry a suite of meteorological and oceanographic sensors. They use wind for propulsion and solar panels for power. They sail between way-points sent via satellite link. The waypoints are adaptive, being set to achieve scientific measurement objectives and can be updated as required.

Two Saildrones have been deployed in the Pacific Sector of the Arctic in 2019, 2021, and 2019 as part of the NASA/NOPP 3rd Multi-Sensor Improved Sea Surface Temperature Project (MISST-3).

For the 150-day 2019 cruises, both Saildrones were equipped with up- and down-looking Heitronics radiometers (blue), which can be used to derive SST_{skin} . A single down-looking radiometer (green) is standard equipment.

Photo © Saildrone Inc. Used with express permission. From Jia, C., Minnett, P.J.. Szczodrak, M. and Izaguirre, M.A. (2022), High Latitude Sea Surface Skin Temperatures Derived from Saildrone Infrared Measurements. IEEE Transactions in Geophysics and Remote Sensing. In Review.

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

ISFRN International Workshop

8-9 September 2022

MISST-3 2019 deployment

-2 0 2 4 6 8 10 12 14 1 UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC

& EARTH SCIENCE

Normalized spectral sensitivity of Heitronics CT09 (sky) and four specific CT15 (sea) IR radiation thermometers

> ISFRN International Workshop 8-9 September 2022

SSTskin can be derived to useful accuracy for angles in the shaded area.

From Jia, C., Minnett, P.J.. Szczodrak, M. and Izaguirre, M.A. (2022), High Latitude Sea Surface Skin Temperatures Derived from Saildrone Infrared Measurements. IEEE Transactions in Geophysics and Remote Sensing. In Review. 12

Saildrone SST_{skin} accuracies

- Comparisons of SST_{skin} from two Saildrones separated by < 10 km are comparable to measurements of $SST_{0.3m}$ measured by SBE 56 thermometers ($\sigma = 0.002$ K). Periods of diurnal heating have been removed.
- Uncertainty budget gives rms accuracies of 0.122 K

From Jia, C., Minnett, P.J.. Szczodrak, M. and Izaguirre, M.A. (2022), High Latitude Sea Surface Skin Temperatures Derived from Saildrone Infrared Measurements. IEEE Transactions in Geophysics and Remote Sensing. In Review. 13

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Saildrone Measured Skin Effect

0.8

0.2

Nighttime Saildrone SST_{skin} minus SST_{-1.71 m} (SBE 56, $\sigma \pm 0.002$ K) as a function of 10 m wind speed. Fitted curve is shown in black, and the formula from Donlon et al. (2002) is in red. The mean and standard deviation of temperature differences, calculated at 1 m s⁼¹ intervals, are in gray.

Asymptotic values at high winds differ by 0.01 K.

> From Jia, C., Minnett, P.J. and Luo B. (2022), Significant Diurnal Warming Events Observed by Saildrone at High Latitudes. In preparation.

NSTIEL SCHOOL of

E. ATMOSPHERIC & EARTH SCIENCE

Summary

- The M-AERIs are robust and maintain their calibration during atsea deployment over many months.
- The M-AERIs run autonomously, with ~daily checks on their wellbeing over ships' satellite internet.
- Routine operations suspended when a rain sensor indicates rain or spray near the M-AERI aperture.
- M-AERI data submitted to Felyx and to UM repository.
- Post-COVID deployments on the *Ronald H Brown* have resumed.
- We anticipate deployments on RCG ships will resume eventually.

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Summary (continued)

- SST_{skin} can be derived to useful accuracy from pairs of Heitronics radiometers on hull of Saildrones in "unicorn" configuration, if measurements from a limited range of accurately measured attitude angles are used, and periods of spray and precipitation are rejected.
- RMS inaccuracies are ~0.122 K
- Matchups between Saildrone SST_{skin} and retrievals from MODIS and VIIRS are underway.

M-AERI Poppins

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE